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LETTER TO THE EDITOR 

On the BPS limit in the classical SU(2) gauge theory 

Y Yang 
Department of Mathematics, University of New Mexico, Albuquerque, NM 87131, USA 

Received 24 January 1990 

Abstract. It is noted that as the Higgs self-coupling parameter A + O  the classical 
’t Hooft-Polyakov SU(2) monopoles approach the Bogomol’nyi-Prasad-Sommerfield 
solution uniformly over entire space. 

The ’t Hooft-Polyakov monopoles of the classical SU(2) Yang-Mills-Higgs ( YMH) 
theory with the Higgs field in the adjoint or triplet representation of the gauge group 
are in the form [ 1,2] 

where r = 1x1 and ( h A ,  k A )  is a solution of the reduced YMH equations 

( ( r 2 h ’ ) ’ = 2 k 2 h + A r 2 ( h 2 - 1 ) h  
r > O  

which minimises, among all pairs of such real scalar fields h, k that satisfy the boundary 
condition 

l imh(r)=O l i m h ( r ) = l  lim k( r )  = 1 lim k(  r) = 0 
r - 0  r-m r - 0  r-rm 

the normalised YMH energy 

E,(h,  k ) = 1 ~ o m d r ( f r 2 h ” + k ‘ 2 + h 2 k 2 + , ( k 2 - l ) 2 + -  1 A r2(h2-1)’). (3) 
2 2r 4 

The existence of such solutions was first established by Tyupkin et al [3] and the 
regularity verified in the work of Rawnsley [4]. In the Bogomol’nyi-Prasad- 
Sommerfield (BE) non-physical limit A = 0 corresponding to vanishing Higgs potential 
and zero Higgs mass, an explicit solution of (lo) was found by guesswork [5,6]: 

r 
ko=-  r>0 .  

1 
h,(r) = coth r - - 

r sinh r 
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The pair ( h, ,  IC,,) gives rise to the well known BPS monopole of unit magnetic charge. 
On the other hand, if A >0, none has succeeded in obtaining an explicit solution of 
(1,) and (2). The purpose of the present letter is to note that, in fact, 

sup {lhA(r)-hO(r)l+ Ik,4(r) -kO(r)l}+o (4) as A +O. 
O<r<CO 

This result, which is suggested by the numerical study of Bais and Primack [7] and 
partially justified in the paper of Chernavskii and Kerner [8], may be useful in 
determining the global behaviour of the 't Hooft-Polyakov monopoles for small values 
of A. 

In order to get the convergence control (4), we need to derive some sufficient 
A -independent estimates of the solutions (h,, k,), for 0 < A < 1, say. For simplicity, in 
what follows, C will denote such a generic positive constant independent of A that 
may vary its value at different places. 

The first two lemmas in the following indicate that the boundary behaviour of 
h,, k, at r = 00 is uniform with respect to the parameter A. 

Lemma 1 .  There holds the A-independent estimate 

lh , ( r ) - l [C Cr-'I2 r>O,O<A<l .  

Proof: By taking a suitable trial function pair, it is easily seen that 

EA(hA, k , ) c C  O < A < l  

for some C. Thus ( 5 )  follows from the simple inequality 

s ( p-' dp)1'2( 1; p2hi2  dp)li2 (7) 

(3) and (6). 

Lemma 2. There exists an r,> 0, independent of 0 < A < 1, so that 

Pro05 From (1 , ) we have 

It can be seen that k: s 1. Otherwise, if there were r >  0 so that k:(r) > 1, then the 
behaviour (2) would imply that there were Os a < b to make k : ( a )  = k : ( b )  = 1 and 
k:(r) > 1, r e  (a, b) .  Let r ' e  (a, b )  satisfy ki(r ' )  = max,,ca.b,k;(r). By virtue of (9), one 
would get k: (r') = 0, a contradiction. 

Thus, using lemma 1, one can find an r,>O independent of A such that ( k : ) " a  
k: , r > r,. Consequently k:( r )  d ero-r for r B r,. The lemma is proved. 

The next two lemmas imply that the boundary behaviour of h,,  k, as r+O is also 
uniform. 
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Lemma 3. For O <  A < 1, there is a constant Cy so that 

1 h, ( r ) (  4 Cr"* O < r < l .  

Proof: The argument is a specialisation of that given in Rawnsley [4]. 
Set & ( r )  = r-'h,, ( r ) .  Due to ( I , , ) ,  & satisfies the equation 

(r4f: . ) '= 2r2(k:  - 1)h +hr3(h2, - l ) h A .  

Since r 4 f A (  r )  = r 3 h i (  r )  - r2h, ( r )  + 0 as r + 0, we have 

By virtue of the above, the Schwarz inequality, and ( 6 ) ,  we obtain 

On the other hand, (7) gives us the estimate 1 h, (r) l  G or If, ( r ) )  d CrF3'*. So 
(10) implies If,( r)l s C r - 2 ,  0 < r < 1, and, in particular, I& ( r ) l  s C r - ' ,  0 < r < 1 .  Apply- 
ing this latter bound in (IO) again we conclude with l f l ( r ) / s  Cr-312,  which in turn 
implies If, ( r ) \  d Cr-'I2, 0 < r < 1 ,  and the desired estimate follows. 

Lemma 4. There is a C so that 1 k, ( r )  - 11 s Cr'/', 0 < r < 1 .  

Proof: One may use an argument similar to that for lemma 1 .  

The uniqueness result stated below ensures that, as A '0, ( h A ,  k , )  (boy ko) .  

Lemma 5. For A =0, ( h o ,  ko) is the only solution of ( l o )  satisfying the boundary 
condition ( 2 ) .  

This uniqueness result was first observed in the numerical work of Frampton [9] 
and later proved by Maison [lo] where the main argument is to show that a finite 
energy solution of ( l o )  and (2) is a solution of the Bogomol'nyi equations 

h ' + i  ( k 2 -  1) = 0 
r > O  [ k t + f , = O  

derived from the duality condition BP+ Di4a = 0 with BP = - $ E ~ ~ , F ; , ,  The fact that 
(ho ,  b) is the only solution of ( 1 1 )  subject to ( 2 )  may be well-accepted. However, 
since we were unable to locate a proof of this fact, here we choose to furnish one for 
completeness. 

Let ( h ,  k)  be a solution of ( 1  1 )  and ( 2 ) .  First the property k2 d 1 tells us that h( r )  
is a non-decreasing function. Hence h( r )  3 0, r z 0. The second equation in (1 1) then 
indicates that k ( r ) > O ,  r s O .  Therefore we are allowed to introduce the transform 
U =In k and reduce (1 1) into 
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Since uo = In also satisfies (12), we obtain 

and, consequently, for 0 < rl < r2 C 03, 

where 

M (  r) = (U - uo)( to- U&)( r). 

We claim that 

lim M (  r) = lim M (  r )  = 0. 
r - 0  r-m 

The first limit in (14) is easily seen from the expression 

M ( r ) =  -[In k(r)-In b(r)][h(r)-ho(r)] .  

To obtain a verification of the second limit, we proceed as follows. 

ro > 0 so that w'( ro) = 0, then w satisfies 
We may assume w'( r )  # 0 for r > 0 where w = U - uo. Otherwise, if there is a point 

w(O)= w'(ro)=O 

with 6 > 0. Therefore w cannot have an absolute extremum at r = ro. The maximum 
principle tells us that w( r) = 0 for r E (0, ro). Thus w = 0 for r > 0. In particular (14) 
is true. 

Hence, we now assume w'(r) # 0 which implies that w(r) is monotone. So 
limr+ww( r) exists or equals f 03. The former case still verifies (14). Thus it remains 
to argue for the latter case. 

We have, using L'Hospital's principle, (11) and (2), 

lim -- W(r)- lim w'(r)= - lim (h(r)-ho(r))  = O  
r-m r r-rw r-m 

and 

W" 
lim nu'( r )  = lim 7 = - lim ( k2( r) - k:( r))  = 0. 
r-m r-m - r  r-m 

Consequently, we get limr+mw( r)  w'( r) = 0. This proves the second limit in (14). 
Now, letting rI + 0, r2 -+ 03 in (13) we find U = uo , namely, (h, k) = ( ho,  ko). Lemma 

5 follows. 
Finally, from (6 ) ,  lemmas 1-4 and the structure of E A ,  it is easily seen that 

{ ( h ,  , k A ) } o < A  < is a precompact subset of C0[o, 03). Lemma 5 and a simple argument 
then prove (4), i.e. ( h A ,  k,) -+ (ho ,  b) in Co[O, 03) as A +O. 
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